TSMC40: ONFI 3.0

Libraries

Name	Process	Form Factor
RGO_TSMC40_25V33_LP_30C_ONFI	LP	Staggered CUP
RGO TSMC40 25V33 LP 50C ONFI	LP	Inline CUP

Summary

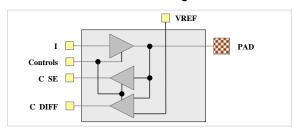
The ONFI library provides the combo driver / receiver cells, the ODT / driver impedance calibration cell, and the voltage reference cell to support both single-ended and differential ONFI 3.0 signaling. This library also meets the requirements for Toggle 2.0 signaling. The pad set includes a full complement of power, spacer, and adapter cells to assemble a complete pad ring by abutment. An included rail splitter allows isolated ONFI domains to be placed in the same pad ring with other power domains while maintaining continuous VDD/VSS in the pad ring for robust ESD protection.

- ONFI 3.0 Single-Ended Driver /Receiver
- ONFI 3.0 Differential Clock Driver / Receiver
- ODT / Z_O Calibration Cell
- Voltage Reference

The ONFI I/O library supports all impedance modes defined in the ONFI 3.0 specification and features fast and precise calibration, low power consumption, area-efficient design, and easy integration into the physical layer (PHY).

ESD Protection:

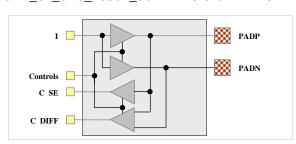
- JEDEC compliant
 - o 2KV ESD Human Body Model (HBM)
 - o 200 V ESD Machine Model (MM)
 - o 500 V ESD Charge Device Model (CDM)


Latch-up Immunity:

- JEDEC compliant
 - Tested to I-Test criteria of ± 100mA @ 125°C

Recommended operating conditions

Symbo	I Description	Min	Nom	Max	Units
V_{VDD}	Core supply voltage	0.99	1.1	1.21	V
V_{DVDD}	I/O augustu valtaga	1.62	1.8	1.98	V
	I/O supply voltage	2.7	3.3	3.6	V
TJ	Junction temperature	-40	25	125	°C
V_{PAD}	Voltage at PAD	-0.3V		V _{DVDD} +0.3V	′ V
V _{IH (DC)}	Input High (DC)	0.7 * V _{DVDD}		$V_{DVDD} + 0.3$	V
V _{IL (DC)}	Input Low (DC)	V _{DVSS} - 0.3		0.3 * V _{DVDD}	V
V _{IH (AC)}	Input High (AC)	0.8 * V _{DVDD}		$V_{DVDD} + 0.3$	V
V _{IL (AC)}	Input Low (AC)	V _{DVSS} - 0.3		0.2 * V _{DVDD}	V
V _{IH (DC)}	Input High (DC)	V _{REF} +.125		$V_{DVDD} + 0.3$	V
V _{IL (DC)}	Input Low (DC)	V _{DVSS} - 0.3		V _{REF} 125	V
V _{IH (AC)}	Input Low (DC) Input High (AC)	V _{REF} +.250			V
V _{IL (AC)}	Input Low (AC)			V _{REF} 125	V


ONP_BI_SDS_1833V_SCB: Single-Ended Driver

ONFI Single-Ended Driver / Receiver Features:

- Driver user-selectable on-die termination and programmable drive strength with ODT / Z₀ calibration and programmable "off" state control.
 - ODT $R_{tt} = 30\Omega / 50\Omega / 75\Omega / 100\Omega / 150\Omega$
 - $Z_{OUT} = \frac{18\Omega}{25\Omega} / \frac{35\Omega}{35\Omega} / \frac{50\Omega}{35\Omega}$
 - Off state Z / pull-up / pull-down / bus keeper
- Receiver single-ended and pseudo-differential outputs
- Powered by 1.8V / 3.3V I/O and 1.1V core supplies
- Maximum operating frequency 200 MHz

ONP_CL_SDS_1833V_SCB: Differential Driver

ONFI Differential Clock Driver / Receiver Features:

- Driver user-selectable on-die termination and programmable drive strength with ODT / Z_O calibration and programmable "off" state control.
 - $\circ ODT R_{tt} = 30\Omega / 50\Omega / 75\Omega / 100\Omega / 150\Omega$
 - $Z_{OUT} = 18\Omega / 25\Omega / 35\Omega / 50\Omega$
 - Off state Z / pull-up / pull-down / bus keeper
- Receiver single-ended and true differential outputs
- Powered by 1.8V / 3.3V I/O and 1.1V / 1.2V core supplies
- Maximum operating frequency 200 MHz

Characterization Corners

0

Nominal VDD	Model	VDD	DVDD [1]	Temperature
1.1V	FF	+10%	+10%	-40°C
	FF	+10%	+10%	125°C
	TT	nominal	nominal	25°C
	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C

[1] DVDD voltages - 1.8V, 3.0V and 3.3V.

TSMC40: ONFI 3.0

Cell summary

Name	Description
	ONFI 3.0 Single-Ended Driver/Receiver
ONP_CL_SDS_1833V_SCB	ONFI 3.0 Differential Clock Driver/Receiver
ONP_SP_CAL_1833V	Calibration cell
ONP_RE_000_1833V	Voltage Reference (VREF).
ANP_BI_DWR_33V	Analog IO cell with two inputs to core: 1. 600Ω series R for ESD, 2. Less than 10Ω
PVP_VD_PDO_1833V	I/O V _{DD} (DVDD) with POC
PVP_VD_RDO_1833V	I/O V _{DD} (DVDD)
PVP_VS_RDO_1833V	I/O V _{SS} (DVSS)
PVP_VS_DRC_1833V	I/O V _{SS} (DVSS is shorted to VSS)
PVP_VD_RCD_11V	Core V _{DD} (VDD)
PVP_VS_RCD_11V	Core V _{SS} (VSS)
PVP_VS_DRC_11V	Core V _{SS} (DVSS is shorted to VSS)
SVP_CO_001_1833V	Corner cell
SVP_SP_000_1833V	0.1µm spacer cell
SVP_SP_001_1833V	1µm spacer cell
SVP_SP_005_1833V	5µm spacer cell
SVP_SP_020_1833V	20µm spacer cell
SPP_RS_005_1833V	Rail splitter cell (breaks DVDD, DVSS, VREF, CAL_DWHVx[30], POC and HVPS)
SPP_SP_CAP_1833V	Core decap cell

© 2006-2014 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

Published by:

Aragio Solutions
2201 K Avenue
Section B Suite 200
Plano, TX 75074-5918
Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America