# SMIC40: LVDS



## Libraries

| Name                        | Process | Form Factor   |
|-----------------------------|---------|---------------|
| RGO SMIC40 25V25 LL UC LVDS | LL      | Staggered CUP |

# **Summary**

The LVDS library provides an LVDS driver, receiver, and temperature stable voltage reference capable of supporting 16 drivers operating at data rates up to 2.0 Gbps. The pad set includes a full complement of power, spacer, and adapter cells to assemble a complete pad ring by abutment. An included rail splitter allows isolated LVDS domains to be placed in the same pad ring with other power domains while maintaining continuous VDD/VSS in the pad ring for robust ESD protection.

- 1.0 GHz LVDS Driver
- 1.0 GHz LVDS Receiver
- LVDS Voltage Reference

## **LVDS Specification Compliant:**

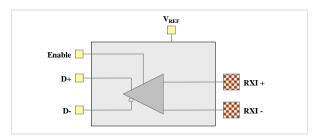
- TIA/EIA-644-A Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits
- IEEE Std 1596.3-1996

#### **ESD Protection:**

- JEDEC compliant
  - o 2KV ESD Human Body Model (HBM)
  - o 200 V ESD Machine Model (MM)
  - o 500 V ESD Charge Device Model (CDM)

## Latch-up Immunity:

- JEDEC compliant
  - Tested to I-Test criteria of ± 100mA @ 125°C


# **Recommended operating conditions**

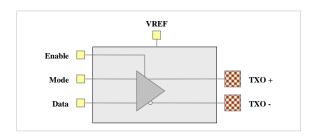
| Symbo          | ol Description       | Min   | Nom | Max                    | Units |
|----------------|----------------------|-------|-----|------------------------|-------|
| $V_{VDD}$      | Core supply voltage  | 0.99  | 1.1 | 1.21                   | V     |
| $V_{DVDD}$     | I/O supply voltage   | 2.25  | 2.5 | 2.75                   | V     |
| T <sub>J</sub> | Junction temperature | -40   | 25  | 125                    | °C    |
| $V_{PAD}$      | Voltage at PAD       | -0.3V |     | V <sub>DVDD</sub> +0.3 | V V   |

## **Characterization Corners**

| <b>Nominal VDD</b> | Model | VDD     | <b>DVDD = 2.5V</b> | Temperature |
|--------------------|-------|---------|--------------------|-------------|
|                    | FF    | +10%    | +10%               | -40°C       |
|                    | FF    | +10%    | +10%               | 125°C       |
| 1.1                | TT    | nominal | nominal            | 25°C        |
|                    | SS    | -10%    | -10%               | -40°C       |
|                    | SS    | -10%    | -10%               | 125°C       |

# LDP\_IN\_675\_25V\_DN: 1GHz LVDS Input




#### LVDS Receiver Features:

- Input receive sensitivity of 75mV peak differential (without hysteresis)
- Common mode range from 0V to 2.4V (limited by Power Supply)
- Powered by 2.5V I/O and 1.1V core supplies
- Power consumption: 5 mW typ & 8.5 mW max @ 1GHz

#### **AC Characteristics**

| Parameter                   | Тур | Max  | Units | Conditions                                                                                            |
|-----------------------------|-----|------|-------|-------------------------------------------------------------------------------------------------------|
| Propagation delay           | 0.5 | 0.85 | ns    | The slew rate for propagation delays, duty cycle distortion and maximum operating frequency are 1V/ns |
| Maximum operating frequency | 1   |      | GHz   | All noise, jitter, and tdcd measured at 1GHz                                                          |
| Maximum data rate           | 2   |      | Gb/s  |                                                                                                       |

# LDP\_OU\_675\_25V\_T: 1GHz LVDS Output



### LVDS Driver Features:

- Operates up to 1GHz (2Gbps) with external 1 pF load
- Common mode output range 1.2V ±100mV
- Differential Skew between TXO\_P and TXO\_N 20ps
- High and low current drive modes to support  $50\Omega$  and  $100\Omega$  differential terminations
- Powered by 2.5V I/O and 1.1V core supplies
- Power consumption: 18.1 mW typ & 25.2 mW max

### **AC Characteristics**

| Symb              | ol Description                             | Condition                          | Min | Тур | Max | Units |
|-------------------|--------------------------------------------|------------------------------------|-----|-----|-----|-------|
| t <sub>PHL</sub>  | Differential high to low propagation delay | $R_L = 100 \Omega$<br>$C_L = 1 pF$ |     | 450 | 690 | ps    |
| t <sub>PLH</sub>  | Differential low to high propagation delay | $R_L = 100 \Omega$<br>$C_L = 1 pF$ |     | 450 | 687 | ps    |
| t <sub>rise</sub> | $V_{\text{OD}}$ differential rise time     | 20% to 80%                         | 150 | 170 | 200 | ps    |
| t <sub>fall</sub> | V <sub>OD</sub> differential fall time     | 20% to 80%                         | 150 | 170 | 200 | ps    |

# SMIC40: LVDS



# **Cell summary**

| Name              | Description                                  |
|-------------------|----------------------------------------------|
| LDP_IN_675_25V_DN | 1GHz LVDS input cell                         |
| LDP_OU_675_25V_T  | 1GHz LVDS output cell                        |
| LDP_RE_000_25V    | LVDS Voltage Reference cell                  |
| PVP_VD_RCD_12V    | Core power (VDD)                             |
| PVP_VS_RCD_12V    | Core ground (VSS)                            |
| PVP_VD_PDO_25V    | I/O power (DVDD) with POC control            |
| PVP_VD_RDO_25V    | I/O power (DVDD)                             |
| PVP_VS_RDO_25V    | I/O ground (VSS)                             |
| SVP_SP_000_25V    | 0.1 µm spacer                                |
| SVP_SP_001_25V    | 1 µm spacer                                  |
| SVP_SP_005_25V    | 5 μm spacer                                  |
| SVP_SP_010_25V    | 10 µm spacer                                 |
| SPP_RS_005_25V    | DVDD, DVSS, POC, BIAS and VREF rail splitter |
| SPC SPP AD UN     | Inline to staggered adapter                  |

# Physical sizes

| Pad name          | Width | Height <sup>[*]</sup> | Units |
|-------------------|-------|-----------------------|-------|
| LDP_RE_000_18V    | 37    | 180                   | μm    |
| LDP_IN_675_25V_DN | 55    | 180                   | μm    |
| LDP_OU_675_25V_T  | 55    | 180                   | μm    |
| PVP_VD_RCD_12V    | 20    | 180                   | μm    |
| PVP_VS_RCD_12V    | 20    | 180                   | μm    |
| PVP_VD_PDO_25V    | 20    | 180                   | μm    |
| PVP_VD_RDO_25V    | 20    | 180                   | μm    |
| PVP_VS_RDO_25V    | 20    | 180                   | μm    |
| SVP_SP_000_25V    | 0.1   | 180                   | μm    |
| SVP_SP_001_25V    | 1     | 180                   | μm    |
| SVP_SP_005_25V    | 5     | 180                   | μm    |
| SVP_SP_010_25V    | 10    | 180                   | μm    |
| SPP_RS_005_25V    | 5     | 180                   | μm    |
| SPC SPP AD UN     | 25    | 180                   | μm    |

[\*] Includes CUP bond opening.

#### © 2006-2013 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

## Published by:

Aragio Solutions
2201 K Avenue
Section B Suite 200
Plano, TX 75074-5918
Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America