GF40: LVDS Pad Set

Libraries

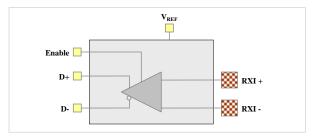
Name	Process CUP	Form Factor
RGO_GF40_25V25_LP_UC_LVDS	LP yes	staggered

Summary

The LVDS I/O is a three-module design (input, output and reference block). The LDP_OU_675_25V_T is a 2GBit/s LVDS Driver, LDP_IN_675_25V_DN is a 2GBit/s LVDS Receiver and the LDP_RE_000_25V is the voltage reference for up to 16 drivers. The LDP_OU_675_25V_T is designed to drive either 50Ω or 100Ω differential termination. This cell has been designed to meet a set of the standard LVDS specifications (IEEE Std 1596.3-1996, Low Voltage Differential Signaling).

Using this LVDS Pad Set, the system can achieve very high data rates per pin with simple termination requirements and low EMI. Both driver and receiver have been optimized for speed/power and can be ported to various pure digital CMOS processes from 0.18µm down to 28nm technologies. The LDP_OU_675_25V_T has been optimized for 2GBit/s operations. The receiver has been designed with no hysteresis in order to optimize sensitivity and skew.

The driver design has all the necessary components for transmit of LVDS data and a temperature stable internal reference for setting of the LVDS signaling voltage and common mode level. This provides user flexibility in deploying multiple LVDS transmitters. The reference block is required for the LVDS drivers to provide a stable common mode voltage as well as an accurate current reference for the driver source / sink current. Maximum operating frequency is 1GHz.


Absolute maximum ratings

Symbol	Description	Value	Units
V_{VDD}	Core supply voltage range	-0.5 to 1.38	V
V_{DVDD}	I/O supply voltage range	-0.5 to 2.95	V
V _{PAD}	Voltage range at PAD	-0.5 to (V _{DVDD} + 0.5)	V
TJ	Junction operating temperature range	-55 to 150	°C

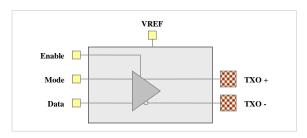
Recommended operating conditions

Symbo	ol Description	Min	Nom	Max	Units
V_{VDD}	Core supply voltage	0.9	1.1 to 1.2	1.26	V
V_{DVDD}	I/O supply voltage	2.25	2.5	2.75	V
V _{VREF}	Reference voltage				V
T _A	Ambient operating temperature	0	25	100	°C
TJ	Junction temperature	-40	25	125	°C
V _{PAD}	Voltage at PAD	-0.3V		V _{DVDD} +0.3V	V

LDP IN 675 25V DN: 1GHz LVDS Input

Key features:

- Powered from 2.5V ±10% and 1.1V to 1.2V (±10%) core power supplies
- Operates up to 1GHz (2Gbps)
- Input receive sensitivity of 75mV peak differential (without hysteresis)
- Common mode range from 0V to 2.4V (limited by Power Supply)
- Power-up sequence independent
- Power consumption is 5 mW typical and 7.5 mW maximum at 1GHz


AC Characteristics

Parameter	Тур	Max	Units	Conditions
Propagation delay	0.5	0.85	ns	The slew rate for propagation delays, duty cycle distortion and maximum operating frequency are 1V/ns
Maximum operating frequency	1		GHz	All noise, jitter, and tdcd measured at 1GHz
Maximum data rate	2		Gb/s	

GF40: LVDS Pad Set

LDP_OU_675_25V_T: 1GHz LVDS Output Pad

Key features:

- Powered from 2.5V ±10% and 1.1V to 1.2V (±10%) core power supplies
- Operates up to 1GHz (2Gbps) with external 1 pF load
- Common mode output range 1.25 Volts ±50mV
- Power-up Sequence Independent
- Differential Skew between TXO_P and TXO_N 40ps
- Mode control for output drive control to drive either 100Ω or 50 Ω termination
 - 0 = 3.25 mA (for 100Ω termination)
 - $0 = 6.50 \text{ mA (for } 50\Omega \text{ termination)}$
- Power consumption at 1 GHz is 18.7 mW typical and 25.5 mW maximum

AC Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
t _{PHL}	Differential high to low propagation delay	$R_L = 100 \Omega$ $C_L = 1 pF$		500	730	ps
t _{PLH}	Differential low to high propagation delay	$R_L = 100 \Omega$ $C_L = 1 pF$		500	730	ps
t _{rise}	V _{OD} differential rise time	20% to 80%	120	190	250	ps
t _{fall}	V _{OD} differential fall time	20% to 80%	120	190	250	ps

Characterization Corners

Nominal VDD	Model	VDD	DVDD = 2.5V	Temperature
	FF	+5%	+10%	-40°C
	FF	+5%	+10%	125°C
1.2	TT	nominal	nominal	25°C
	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C
1.1	FF	+10%	+10%	-40°C
	FF	+10%	+10%	125°C
	TT	nominal	nominal	25°C
	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C

Cell summary

Name	Description
LDP_IN_675_25V_DN	1GHz LVDS input cell
LDP_OU_675_25V_T	1GHz LVDS output cell
LDP_RE_000_25V	V _{REF} pad
PVP_VD_RCD_12V	Core power pad with VREF
PVP_VS_RCD_12V	Power pad for VSS with VREF bus
PVP_VD_PDO_25V	Driver power pad with POC control
PVP_VD_RDO_25V	Driver power pad
PVP_VS_RDO_25V	I/O ground supply with VREF bus
SVP_SP_001_25V	0.1 µm spacer
SVP_SP_001_25V	1 µm spacer
SVP_SP_005_25V	5 μm spacer
SVP_SP_010_25V	10 µm spacer
SPP_RS_005_25V	DVDD, DVSS, POC, BIAS and VREF rail splitter
SPC_SPC_AD_UN	Core limited library adapter pad

Physical sizes

Pad name	Width	Height ^[*]	Units
LDP_RE_000_18V	37	180	μm
LDP_IN_675_25V_DN	55	180	μm
LDP_OU_675_25V_T	55	180	μm
PVP_VD_RCD_12V	20	180	μm
PVP_VS_RCD_12V	20	180	μm
PVP_VD_PDO_25V	20	180	μm
PVP_VD_RDO_25V	20	180	μm
PVP_VS_RDO_25V	20	180	μm
SVP_SP_000_25V	0.1	180	μm
SVP_SP_001_25V	1	180	μm
SVP_SP_005_25V	5	180	μm
SVP_SP_010_25V	10	180	μm
SPP_RS_005_25V	5	180	μm
SPP_SPC_AD_UN	25	180	μm

[*] Includes CUP bond opening.

© 2006-2011 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

Published by:

Aragio Solutions
2201 K Avenue
Section B Suite 200
Plano, TX 75074-5918
Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America