TSMC 16/12: LVDS

Libraries

Name	Process	Form Factor
RGO_TSMC16_18V25_FFC_UC_LVDS	FFC	Staggered CUP
RG0_TSMC12_18V25_FFC_LL_UC_LVDS	FFC_LL	Staggered CUP

Summary

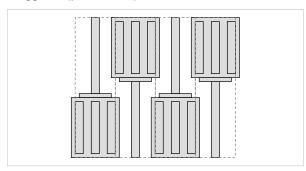
The LVDS library provides an LVDS driver, receiver, and temperature stable voltage reference capable of supporting 16 drivers operating at data rates up to 2.4 Gbps. Also included is a full complement of power, spacer, and adapter cells to assemble a complete pad ring by abutment. An included rail splitter allows isolated LVDS domains to be placed in the same pad ring with other power domains while maintaining continuous VDD/VSS in the pad ring for robust ESD protection.

These libraries are offered at both 16nm and a 12nm shrink. They are available in a staggered CUP wire bond implementation with a flip chip option.

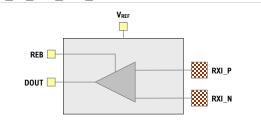
LVDS Specification Compliant:

- TIA/EIA-644-A Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits
- IEEE Std 1596.3-1996

ESD Protection:

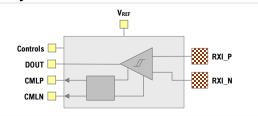

- JEDEC compliant
 - 2KV ESD Human Body Model (HBM)
 - o 500 V ESD Charge Device Model (CDM)

Latch-up Immunity:


- JEDEC compliant
 - Tested to I-Test criteria of ± 100 mA @ 125°C

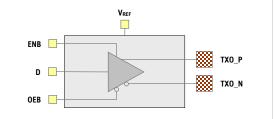
Cell Size & Form Factor

Staggered (pad-limited) – 50.4 μ m x 165.024 μ m


LDP_IN_800_25V_DN: 2.0GHz LVDS Receiver

LVDS Receiver Features:

- Operates up to 2.0 GHz (4.0 Gbps)
- Input receive sensitivity of 75mV peak differential (without hysteresis)
- Duty Cycle Distortion (DCD) 50 ps typical
- Common mode range from 0V to 2.4V (limited by power supply)
- Powered by 1.8V I/O and 0.8V core supplies


LDP_IN_800_25V_DS: 1.2GHz LVDS Receiver with hysteresis and CML out

LVDS Receiver Features:

- DOUT operates up to 1.2 GHz (2.4 Gbps)
- CML Out operates up to 800 MHz (1.6 Gbps)
- Input receive sensitivity of 100mV with hysteresis and 75mV without hysteresis (peak differential)
- Duty Cycle Distortion (DCD) 50 ps typical
- Common mode range from 0V to 2.4V (limited by power supply)
- Powered by 1.8V I/O and 0.8V core supplies

LDP_OU_800_18V_T: 2.0GHz LVDS Driver

LVDS Driver Features:

- Operates up to 2.0 GHz (4.0 Gbps) with external 1 pF load
- Common mode output range 1.1V ±100mV
- Supports single termination (far end) only -100Ω differential
- Powered by 1.8V I/O and 0.8V core supplies

TSMC 16/12: LVDS

Recommended operating conditions

Symbo	Description	Min	Nom	Max	Units
VVDD	Core supply voltage	0.72	0.80	0.88	V
Vdvdd	I/O supply voltage	1.62	1.8	1.98	V
TJ	Junction temperature	-40	25	125	°C
VPAD	Voltage at PAD	-0.3V		V _{DVDD} +0.3V	V
VIH	Input high at PAD	0.7 * V _{DVDD}		V _{DVDD} + 0.3	V
VIL	Input low at PAD	V _{DVSS} - 0.3		0.3 * V _{DVDD}	V

Characterization Corners (16nm)

Model	LPE Type	VDD=0.8V	DVDD=1.8V	Temp
FFGNP	Cbest_CCbest_T	+10%	+10%	-40°C
FFGNP	Cbest_CCbest_T	+10%	+10%	0°C
FFGNP	Cbest_CCbest_T	+10%	+10%	125°C
FFG	Ctypical	+10%	+10%	125°C
TT	Ctypical	nominal	nominal	25°C
TT	Ctypical	nominal	nominal	85°C
SSGNP	Cworst_CCworst_T	-10%	-10%	-40°C
SSGNP	Cworst_CCworst_T	-10%	-10%	0°C
SSGNP	Cworst_CCworst_T	-10%	-10%	125°C

Characterization Corners (12nm)

Model	LPE Type	VDD=0.8V	DVDD=1.8V	Temp
FF	Cbest_CCbest	+10%	+10%	-40°C
FF	Cbest_CCbest	+10%	+10%	0°C
FF	Cbest_CCbest	+10%	+10%	125°C
FFG	Ctypical	+10%	+10%	125°C
TT	Ctypical	nominal	nominal	25°C
TT	Ctypical	nominal	nominal	85°C
SS	Cworst_CCworst	-10%	-10%	-40°C
SS	Cworst_CCworst	-10%	-10%	0°C
SS	Cworst_CCworst	-10%	-10%	125°C

Cell Summary & Physical Sizes

Name	Description
LDP_IN_800_25V_DN *	2.0 GHz LVDS input cell
LDP_IN_800_25V_DS *	1.2 GHz LVDS input cell
LDP_OU_800_18V_T *	2.0 GHz LVDS output cell
LDP_RE_000_18V *	LVDS Voltage Reference cell
PVP_VD_RCD_10V	Core power (VDD)
PVP_VS_RCD_10V	Core ground (VSS)
PVP_VD_PDO_18V *	I/O power (DVDD) with POC control
PVP_VD_RDO_18V	I/O power (DVDD)
PVP_VS_RDO_18V	I/O ground (VSS)
SVP_SP_000_18V	0.1 µm spacer
SVP_SP_001_18V	1 µm spacer
SVP_SP_005_18V	5 µm spacer
SVP_SP_010_18V	10 µm spacer
SPP_RS_005_18V	Rail splitter

*Supplied in vertical-only and horizontal-only orientations

Staggered CUP Cells CUP_TSMC16_44X80_IN 44µm X 80µm Inner CUP_TSMC16_44X80_OUT 44µm X 80µm Outer CUP_TSMC16_FC Flip chip with top metal port CUP_TSMC16_FC_NRV Flip chip without RV vias

© 2011-2018 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

Published by:

Aragio S	olutions
2201 K A	venue
Section I	3 Suite 200
Plano, T	X 75074-5918
Phone:	(972) 516-0999
Fax:	(972) 516-0998
Web:	http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America