# **TSMC 16/12: ONFI 4.1**



#### Libraries

| Name                                 | Process | Form<br>Factor   |
|--------------------------------------|---------|------------------|
| RGO_TSMC16_18V18_FFC_20C_ONFI_4_1    | FFC     | Staggered<br>CUP |
| RGO_TSMC12_18V18_FFC_LL_20C_ONFI_4_1 | FFC_LL  | Staggered<br>CUP |

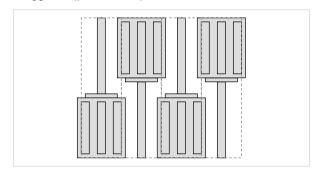
## Summary

The ONFI 4.1 library provides the combo driver / receiver cells, the ODT / driver impedance calibration cell, and the voltage reference cell to support both single-ended and differential ONFI 4.1 signaling. This library also meets the requirements for ONFI 3.0 & Toggle 2.0 signaling. Also included is a full complement of power, spacer, and adapter cells to assemble a complete pad ring by abutment. An included rail splitter allows isolated ONFI domains to be placed in the same pad ring with other power domains while maintaining continuous VDD/VSS in the pad ring for robust ESD protection.

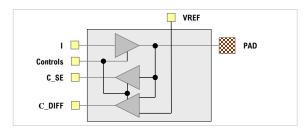
The ONFI 4.1 I/O library supports all impedance modes defined in the ONFI 4.1 specification and features fast and precise calibration, low power consumption, area-efficient design, and easy integration into the physical layer (PHY).

These libraries are offered at both 16nm and a 12nm shrink. They are available in a staggered CUP wire bond implementation with a flip chip option.

#### **ESD Protection:**


- JEDEC compliant
  - o 2KV ESD Human Body Model (HBM)
  - o 500 V ESD Charge Device Model (CDM)

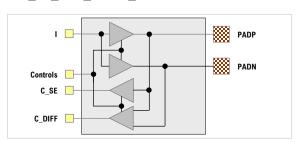
#### Latch-up Immunity:


- JEDEC compliant
  - Tested to I-Test criteria of ± 100mA @ 125°C

#### **Cell Size & Form Factor**

### Staggered (pad-limited) - 22.08µm x 358.8µm




## ONP\_BI\_SDS\_1218V\_SCB: Single-Ended Driver



#### ONFI Single-Ended Driver / Receiver Features:

- Driver user-selectable on-die termination and programmable drive strength with ODT / Z<sub>O</sub> calibration and programmable "off" state control.
  - ODT  $R_{tt} = 30\Omega / 50\Omega / 75\Omega / 100\Omega / 150\Omega$
  - $\circ \qquad Z_{OUT} = 18\Omega \, / \, 25\Omega \, / \, 35\Omega \, / \, 50\Omega$
  - Off state Z / pull-up / pull-down / bus keeper
- Receiver single-ended and pseudo-differential outputs
- Powered by 1.2V / 1.8V I/O and 0.8V core supplies
- Maximum operating frequency 400 MHz

## ONP\_CL\_SDS\_1218V\_SCB: Differential Driver



### ONFI Differential Clock Driver / Receiver Features:

- Driver user-selectable on-die termination and programmable drive strength with ODT / Z<sub>O</sub> calibration and programmable "off" state control.
  - $\circ \quad \text{ODT R}_{tt} = 30\Omega / 50\Omega / 75\Omega / 100\Omega / 150\Omega$
  - $Z_{OUT} = 18\Omega / 25\Omega / 35\Omega / 50\Omega$
  - Off state Z / pull-up / pull-down / bus keeper
- Receiver single-ended and true differential outputs
- Powered by 1.2V / 1.8V I/O and 0.8V core supplies
- Maximum operating frequency 400 MHz

# **TSMC 16/12: ONFI 4.1**



# **Recommended operating conditions**

| Symbol               | Description         |                | Min                     | Nom  | Max                     | Units |
|----------------------|---------------------|----------------|-------------------------|------|-------------------------|-------|
| V <sub>VDD</sub>     | Core supply voltage | Э              | 0.72                    | 0.80 | 0.88                    | V     |
| TJ                   | Junction temperatu  | re             | -40                     | 25   | 125                     | °C    |
| V <sub>PAD</sub>     | Voltage at PAD      |                | -0.3V                   |      | V <sub>DVDD</sub> +0.3V | V     |
| $V_{DVDD}$           | I/O supply voltage  |                | 1.62                    | 1.8  | 1.98                    | V     |
| V <sub>IH</sub> (DC) | Input High (DC)     | 쏦              | $0.7 * V_{DVDD}$        |      | $V_{DVDD} + 0.3$        | V     |
| VIL (DC)             | Input Low (DC)      | NV-DDR         | $V_{\text{DVSS}}$ - 0.3 |      | 0.3 * V <sub>DVDD</sub> | V     |
| VIH (AC)             | Input High (AC)     | ź              | $0.8 * V_{DVDD}$        |      | $V_{DVDD} + 0.3$        | V     |
| VIL (AC)             | Input Low (AC)      |                | V <sub>DVSS</sub> - 0.3 |      | 0.2 * V <sub>DVDD</sub> | V     |
| $V_{DVDD}$           | I/O supply voltage  |                | 1.62                    | 1.8  | 1.98                    | V     |
| VIH (DC)             | Input High (DC)     | 22             | V <sub>REF</sub> +.125  |      | $V_{DVDD} + 0.3$        | V     |
| V <sub>IL (DC)</sub> | Input Low (DC)      | <b>NV-DDR2</b> | $V_{\text{DVSS}}$ - 0.3 |      | V <sub>REF</sub> 125    | V     |
| VIH (AC)             | Input High (AC)     | ≩              | V <sub>REF</sub> +.250  |      |                         | V     |
| V <sub>IL (AC)</sub> | Input Low (AC)      |                |                         |      | V <sub>REF</sub> 125    | V     |
| $V_{DVDD}$           | I/O supply voltage  |                | 1.14                    | 1.2  | 1.26                    | V     |
| V <sub>IH (DC)</sub> | Input High (DC)     | 23             | V <sub>REF</sub> +.100  |      | $V_{DVDD} + 0.3$        | V     |
| VIL (DC)             | Input Low (DC)      | NV-DDR3        | $V_{\text{DVSS}}$ - 0.3 |      | V <sub>REF</sub> 100    | V     |
| V <sub>IH</sub> (AC) | Input High (AC)     | ≩              | V <sub>REF</sub> +.150  |      |                         | V     |
| V <sub>IL (AC)</sub> | Input Low (AC)      |                |                         |      | V <sub>REF</sub> 150    | V     |

# **Characterization Corners (16nm)**

| Model | LPE Type         | VDD=0.8V | DVDD      | Temp  |
|-------|------------------|----------|-----------|-------|
| FFGNP | Cbest_CCbest_T   | +10%     |           | -40°C |
| FFGNP | Cbest_CCbest_T   | +10%     |           | 0°C   |
| FFGNP | Cbest_CCbest_T   | +10%     | See table | 125°C |
| FFG   | Ctypical         | +10%     | below for | 125°C |
| TT    | Ctypical         | nominal  | DVDD      | 25°C  |
| TT    | Ctypical         | nominal  | voltage   | 85°C  |
| SSGNP | Cworst_CCworst_T | -10%     | ranges.   | -40°C |
| SSGNP | Cworst_CCworst_T | -10%     |           | 0°C   |
| SSGNP | Cworst_CCworst_T | -10%     |           | 125°C |

## **Characterization Corners (12nm)**

| Model | LPE Type       | VDD=0.8V | DVDD                   | Temp  |
|-------|----------------|----------|------------------------|-------|
| FF    | Cbest_CCbest   | +10%     |                        | -40°C |
| FF    | Cbest_CCbest   | +10%     |                        | 0°C   |
| FF    | Cbest_CCbest   | +10%     |                        | 125°C |
| FFG   | Ctypical       | +10%     | See table              | 125°C |
| TT    | Ctypical       | nominal  | below for DVDD voltage | 25°C  |
| TT    | Ctypical       | nominal  | ranges.                | 85°C  |
| SS    | Cworst_CCworst | -10%     |                        | -40°C |
| SS    | Cworst_CCworst | -10%     |                        | 0°C   |
| SS    | Cworst_CCworst | -10%     |                        | 125°C |

## **Library Characterization DVDD Voltage Ranges**

| Non | ninal DVDD          | FF   | TT   | SS   | Units |
|-----|---------------------|------|------|------|-------|
| 1.8 | NV-DDR &<br>NV-DDR2 | 1.95 | 1.8V | 1.7  | V     |
| 1.2 | NV-DDR3             | 1.26 | 1.2  | 1.14 | V     |

# **Cell summary**

| Name                   | Description                                   |
|------------------------|-----------------------------------------------|
| ONP_BI_SDS_1218V_SCB * | ONFI Single-Ended Driver/Receiver             |
| ONP_CL_SDS_1218V_SCB * | ONFI Differential Clock Driver/Receiver       |
| ONP_SP_CAL_1218V *     | Calibration cell                              |
| ONP_RE_000_1218V *     | Voltage Reference (VREF).                     |
| PVP_VD_PDO_1218V *     | I/O V <sub>DD</sub> (DVDD) with POC           |
| PVP_VD_RDO_1218V *     | I/O V <sub>DD</sub> (DVDD)                    |
| PVP_VS_RDO_1218V *     | I/O V <sub>SS</sub> (DVSS)                    |
| PVP_VS_DRC_1218V *     | I/O V <sub>SS</sub> (DVSS is shorted to VSS)  |
| PVP_VD_RCD_0918V *     | Core V <sub>DD</sub> (VDD)                    |
| PVP_VS_RCD_0918V *     | Core V <sub>SS</sub> (VSS)                    |
| PVP_VS_DRC_0918V *     | Core V <sub>SS</sub> (DVSS is shorted to VSS) |
| SVP_CO_000_1218V       | Corner cell – rail splitter                   |
| SVP_CO_001_1218V       | Corner cell - continous                       |
| SVP_SP_001_1218V       | 1µm spacer cell                               |
| SVP_SP_005_1218V *     | 5µm spacer cell                               |
| SVP_SP_020_1218V *     | 20µm spacer cell                              |
| SPP_RS_005_1218V       | Rail splitter cell                            |
| SPP_SP_CAP_1218V       | Core decoupling cap cell                      |

<sup>\*</sup> Vertical-only and horizontal-only orientations

| Staggered CUP Cells  |                               |
|----------------------|-------------------------------|
| CUP_TSMC16_44X80_IN  | 44µm X 80µm Inner             |
| CUP_TSMC16_44X80_OUT | 44µm X 80µm Outer             |
| CUP_TSMC16_FC        | Flip chip with top metal port |
| CUP_TSMC16_FC_NRV    | Flip chip without RV vias     |

#### © 2011-2018 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

#### Published by:

Aragio Solutions
2201 K Avenue
Section B Suite 200
Plano, TX 75074-5918
Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America