# **TSMC 06/07: DDR3\_DDR4**



## Libraries

| Name                               | Process | Form Factor            |
|------------------------------------|---------|------------------------|
| RGO_TSMC06_18V15_6FF_25F_DDR3_DDR4 | 6FF     | Staggered<br>Flip Chip |
| RGO_TSMC07_18V15_7FF_25C_DDR3_DDR4 | 6FF     | Staggered<br>Flip Chip |

# **Summary**

The DDR3\_DDR4 library contains the combo driver/receiver cells, the driver impedance calibration cell, and the DDR voltage reference cell providing both single-ended and differential signaling for DDR3 and DDR4 applications. Also included is a full complement of power, corner and spacer cells to assemble a functional pad ring by abutment. An included rail splitter allows multiple power domains to be isolated in the same pad ring while maintaining continuous VDD/VSS for robust ESD protection.

#### **Full DDR4** capability

Data rates – 1600 MT/s, 1866 MT/s, 2133 MT/s, 2400 MT/s

#### **Full DDR3 capability**

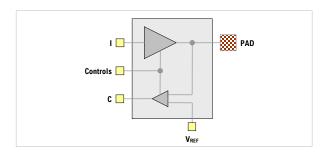
 Data rates – 800 MT/s, 1066 MT/s, 1333 MT/s, 1600 MT/s, 1866 MT/s, 2133 MT/s

#### **ESD Protection:**

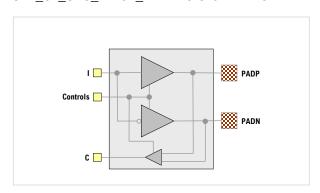
- JEDEC compliant
  - o 2kV ESD Human Body Model (HBM)
  - o 500 V ESD Charge Device Model (CDM)

## Latch-up Immunity:

- JEDEC compliant
  - Tested to I-Test criteria of ± 100mA @ 125°C


## **Cell Size & Form Factor**

- Staggered (pad-limited) 42μm x 250.02μm
- Flip chip implementation with CUP structure built in


## **Recommended Operating Conditions**

| Parameter  | Description          |      | Min               | Nom  | Max               | Units |
|------------|----------------------|------|-------------------|------|-------------------|-------|
| $V_{VDD}$  | Core supply voltage  |      | 0.675             | 0.75 | 0.825             | V     |
| .,         | I/O supply           | DDR4 | 1.14              | 1.2  | 1.26              | V     |
| $V_{DVDD}$ | voltage              | DDR3 | 1.425             | 1.5  | 1.575             | V     |
| TJ         | Junction temperature |      | -40               | 25   | +125              | °C    |
| $V_{PAD}$  | Voltage at PAD       |      | $V_{\text{DVSS}}$ |      | $V_{\text{DVDD}}$ | V     |

# SLP\_BI\_SDS\_1215V\_D: Single-Ended Driver



# SLP CL SDS 1215V D: Differential Driver



#### **DDR Driver Features**

- User programmable drive strength
  - $DDR3 Z_{OUT} = 34 / 40 \Omega$
  - $\circ DDR4 Z_{OUT} = 34 / 48 \Omega$
- User programmable on-die termination
  - $\circ \qquad DDR3 120 \, / \, 60 \, / \, 40 \, / \, 30 \, / \, 24 \, / \, 20 \, / \, 17 \, \, \Omega$
  - $\circ \qquad DDR4-240 \, / \, 120 \, / \, 80 \, / \, 60 \, / \, 48 \, / \, 40 \, / \, 34 \, \, \Omega$
- Operating frequency up to 1200 MHz (2400 MT/sec data rate)
- Power sequencing independent design with Power-On Control

# **TSMC 06/07: DDR3\_DDR4**



## **Characterization Corners**

| Model [1] | LPE Type       | VDD     | DVDD                | Temp  |
|-----------|----------------|---------|---------------------|-------|
| FF        | Cbest_CCbest   | +10%    |                     | -40°C |
| FF        | Cbest_CCbest   | +10%    |                     | 0°C   |
| FF        | Cbest_CCbest   | +10%    | See table below for | 125°C |
| FFG       | Ctypical       | +10%    |                     | 125°C |
| TT        | Ctypical       | nominal | DVDD                | 25°C  |
| TT        | Ctypical       | nominal | voltage             | 85°C  |
| SS        | Cworst_CCworst | -10%    | ranges.             | -40°C |
| SS        | Cworst_CCworst | -10%    |                     | 0°C   |
| SS        | Cworst_CCworst | -10%    |                     | 125°C |

[1] Listed models are for 7FF. 6FF models are FFGNP / TT / SSGNP.

# **Characterization DVDD Voltage Ranges**

| Nominal DVDD |      | FF    | TT  | SS    | Units |
|--------------|------|-------|-----|-------|-------|
| 1.2          | DDR4 | 1.26  | 1.2 | 1.14  | V     |
| 1.5          | DDR3 | 1.575 | 1.5 | 1.425 | V     |

## **Cell summary**

| Name                 | Description                          |
|----------------------|--------------------------------------|
| SLP_BI_SDS_1215V_D   | Single-ended driver / receiver       |
| SLP_CL_SDS_1215V_D   | Differential clock driver / receiver |
| SLP_SP_CAL_SDS_1215V | DDR calibration cell                 |
| SLP_SP_CSH_0915V     | Calibration code bus driver          |
| SLP_RE_000_1215V     | DDR voltage reference                |
| PVP_VD_RCD_0915V     | Core power (VDD)                     |
| PVP_VS_RCD_0915V     | Core ground (VSS)                    |
| PVP_VD_PDO_1215V     | I/O power (DVDD) with POC            |
| PVP_VD_RDO_1215V     | I/O power (DVDD)                     |
| PVP_VS_RDO_1215V     | I/O ground (DVSS)                    |
| SVP_SP_000_1215V     | 0.1 µm spacer                        |
| SVP_SP_001_1215V     | 1 µm spacer                          |
| SVP_SP_005_1215V     | 5 μm spacer                          |
| SVP_SP_020_1215V     | 20 µm spacer                         |
| SVP_CO_001_1215V     | Corner cell                          |
| SPP_RS_005_1215V     | Rail splitter                        |
| SPP_AD_SSTL_1215V    | DDR to staggered 1.8V GPIO adapter   |
| SPP_SP_CAP_1215V     | DVDD/DVSS decoupling cap             |

#### © 2011-2022 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

Published by:

Aragio Solutions 2201 K Avenue Section B Suite 200 Plano, TX 75074-5918

Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America