TSMC 06/07: ONFI 4.1

Libraries

Name	Process	Form Factor
RGO_TSMC06_18V18_6FF_20F_ONFI_4_1	6FF	Staggered Flip Chip
RGO_TSMC07_18V18_7FF_20C_ONFI_4_1	7FF	Staggered Flip Chip

Summary

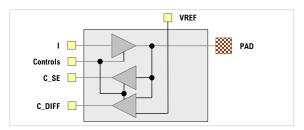
The ONFI 4.1 library provides the driver / receiver cells, the ODT / driver impedance calibration cell, and the voltage reference cell to support both single-ended and differential ONFI 4.1 signaling. This library is backward compatible with ONFI 3.0 and meets the requirements for Toggle 2.0 signaling. Also included is a full complement of power, spacer, and adapter cells to assemble a functional pad ring by abutment. An included rail splitter allows isolated ONFI domains to be placed in the same pad ring with other power domains while maintaining continuous VDD/VSS in the pad ring for robust ESD protection.

The ONFI 4.1 I/O library supports all impedance modes defined in the ONFI 4.1 specification and features fast and precise calibration, low power consumption, area-efficient design, and easy integration into the physical layer (PHY).

This library is offered at both 6nm and 7nm. It is available in a staggered flip chip implementation.

ESD Protection:

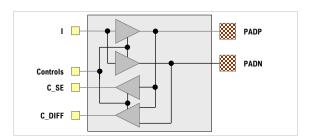
- JEDEC compliant
 - 2kV ESD Human Body Model (HBM)
 - 500 V ESD Charge Device Model (CDM)


Latch-up Immunity:

- JEDEC compliant
 - o Tested to I-Test criteria of ± 100mA @ 125°C

Cell Size & Form Factor

- Staggered (pad-limited) 22.08μm x 362.917μm
- Flip chip implementation with CUP structure built in


ONP_BI_SDS_1218V_SCB: Single-Ended Driver

ONFI Single-Ended Driver / Receiver Features:

- Driver user-selectable on-die termination and programmable drive strength with ODT / Z_O calibration and programmable "off" state control.
 - ODT $R_{tt} = 30\Omega / 50\Omega / 75\Omega / 100\Omega / 150\Omega$
 - $\circ \qquad Z_{OUT} = 18\Omega \, / \, 25\Omega \, / \, 35\Omega \, / \, 50\Omega$
 - o Off state hi-Z / pull-up / pull-down / bus keeper
- Receiver single-ended and pseudo-differential outputs
- Maximum operating frequency 600 MHz

ONP_CL_SDS_1218V_SCB: Differential Driver

ONFI Differential Clock Driver / Receiver Features:

- $\hbox{ \bullet } \quad \text{Driver-user-selectable on-die termination and programmable} \\ \quad \text{drive strength with ODT } / \ Z_O \ \text{calibration and programmable} \\ \text{``off'' state control.}$
 - ODT $R_{tt} = 30\Omega / 50\Omega / 75\Omega / 100\Omega / 150\Omega$
 - $\circ Z_{OUT} = 18\Omega / 25\Omega / 35\Omega / 50\Omega$
 - Off state hi-Z / pull-up / pull-down / bus keeper
- Receiver single-ended and true differential outputs
- Maximum operating frequency 600 MHz

TSMC 06/07: ONFI 4.1

Recommended Operating Conditions

Symbol	Description	-	Min	Nom	Max	Units
V_{VDD}	Core supply voltage		0.675	0.75	0.825	V
T_J	Junction temperature		-40	25	125	°C
V_{PAD}	Voltage at PAD		-0.3V		V _{DVDD} +0.3V	V
V_{DVDD}	I/O supply voltage		1.62	1.8	1.98	V
V _{IH (DC)}	Input High (DC)	ਲ	$0.7 * V_{DVDD}$		$V_{DVDD} + 0.3$	V
V _{IL (DC)}	Input Low (DC)	NV-DDR	V_{DVSS} - 0.3		$0.3 * V_{DVDD}$	V
V _{IH (AC)}	Input High (AC)	ź	$0.8 * V_{DVDD}$		$V_{DVDD} + 0.3$	V
V _{IL (AC)}	Input Low (AC)		V_{DVSS} - 0.3		$0.2 * V_{DVDD}$	V
V_{DVDD}	I/O supply voltage		1.62	1.8	1.98	V
V _{IH (DC)}	Input High (DC)	-DDR2	V _{REF} +.125		$V_{DVDD} + 0.3$	V
V _{IL (DC)}	Input Low (DC)	þ	V_{DVSS} - 0.3		V_{REF} 125	V
V _{IH (AC)}	Input High (AC)	≥	V_{REF} +.250			V
V _{IL (AC)}	Input Low (AC)				V _{REF} 125	V
V_{DVDD}	I/O supply voltage		1.14	1.2	1.26	V
V _{IH (DC)}	Input High (DC)	83	V _{REF} +.100		$V_{DVDD} + 0.3$	V
$V_{IL(DC)}$	Input Low (DC)	NV-DDR3	V_{DVSS} - 0.3		V_{REF} 100	V
$V_{\text{IH (AC)}}$	Input High (AC)	Ž	V_{REF} +.150			V
V _{IL (AC)}	Input Low (AC)				V _{REF} 150	V

Characterization Corners

Model [1]	LPE Type	VDD=0.75V	DVDD	Temp
FF	Cbest_CCbest	+10%		-40°C
FF	Cbest_CCbest	+10%		0°C
FF	Cbest_CCbest	Cbest +10% See table		125°C
FFG	Ctypical	+10%	below for	125°C
TT	Ctypical	nominal	DVDD	25°C
TT	Ctypical	nominal	voltage	85°C
SS	Cworst_CCworst	-10%	ranges.	-40°C
SS	Cworst_CCworst	-10%		0°C
SS	Cworst_CCworst	-10%		125°C

[1] Listed models are for 7FF. 6FF models are FFGNP / TT / SSGNP.

Characterization DVDD Voltage Ranges

Non	ninal DVDD	FF	TT	SS	Units
1.8	NV-DDR & NV-DDR2	1.95	1.8V	1.7	V
1.2	NV-DDR3	1.26	1.2	1.14	V

Cell Summary

Name	Description
ONP_BI_SDS_1218V_SCB	ONFI Single-Ended Driver/Receiver
ONP_CL_SDS_1218V_SCB	ONFI Differential Clock Driver/Receiver
ONP_SP_CAL_1218V	Calibration cell
ONP_RE_000_1218V	Voltage Reference (VREF).
PVP_VD_PDO_1218V	I/O V _{DD} (DVDD) with POC
PVP_VD_RDO_1218V	I/O V _{DD} (DVDD)
PVP_VS_RDO_1218V	I/O V _{SS} (DVSS)
PVP_VS_DRC_1218V	I/O V _{SS} (DVSS is shorted to VSS)
PVP_VD_RCD_0918V	Core V _{DD} (VDD)
PVP_VS_RCD_0918V	Core V _{SS} (VSS)
PVP_VS_DRC_0918V	Core V _{SS} (DVSS shorted to VSS)
SVP_CO_000_1218V	Corner cell – rail splitter
SVP_CO_001_1218V	Corner cell - continous
SVP_SP_001_1218V	1µm spacer cell
SVP_SP_005_1218V	5µm spacer cell
SVP_SP_020_1218V	20µm spacer cell
SPP_RS_005_1218V	Rail splitter cell
SPP_SP_CAP_1218V	Core decoupling cap cell

© 2011-2022 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

Published by:

Aragio Solutions
2201 K Avenue
Section B Suite 200
Plano, TX 75074-5918
Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This document may be reproduced and distributed in whole, in any medium, physical or electronic, under the terms of a license or nondisclosure agreement with Aragio.

Printed in the United States of America